Empirical formulas for fragmentation production cross section

Authors

DOI:

https://doi.org/10.63907/ansa.v1i4.63

Keywords:

neutron-rich nuclei, fragment production, cross sections, neutron drip line

Abstract

Production cross sections of neutron-rich nuclei in projectile fragmentation reactions measured at zero degrees are systematically analyzed using published experimental data. By comparing the yields of O, F, Ne, Na, Mg, Al, Si, and P isotopes produced in $^{40}$Ar-induced fragmentation at beam energies of 35~MeV/nucleon, 57--120~MeV/nucleon, and 1~GeV/nucleon, we demonstrate that the production cross sections of neutron-rich fragments are, within experimental uncertainties, essentially independent of the projectile energy over this broad range. Motivated by this limiting-fragmentation behavior, we propose an empirical systematics for neutron-rich fragment production based on the binding energy per nucleon ($\mathrm{BE}/A$) of the final nuclei. The cross sections are found to follow a steep exponential dependence on $\mathrm{BE}/A$, spanning 8--9 orders of magnitude for small variations of $\mathrm{BE}/A$. The systematics is tested for reactions induced by $^{40}$Ar, $^{48}$Ca, $^{58,64,68}$Ni, $^{72}$Zn, $^{76}$Ge, $^{82}$Se, and $^{86}$Kr projectiles on Be and Ta targets, and the corresponding fit parameters are shown to correlate with the fragment charge $Z$ and the projectile neutron-to-proton ratio $(N/Z)_{\mathrm{projectile}}$. Additionally, a complementary analysis based on $Q_{gg}$ systematics (mass difference between projectile and detected fragments) is also presented, and the advantages and limitations of the $\mathrm{BE}/A$-based description for extrapolating yields toward the neutron drip line are discussed.

References

V. V. Volkov, Treatise on Heavy-Ion Science, Ed. D. A. Bromley, Plenum Press, Vol. 8, 101 (1989).

G. D. Westfall et al., Phys. Rev. C 17, 1368 (1978).

D. Guillemaud-Mueller, Yu. E. Penionzhkevich et al., Z. Phys. A 332, 189 (1989).

D. Guillemaud-Mueller et al., Phys. Rev. C 41, 937 (1990).

O. Tarasov et al., Phys. Rev. C 80, 034609 (2009).

O. Tarasov et al., Phys. Rev. C 87, 054612 (2013).

M. Notani, Phys. Rev. C 76, 044605 (2007).

K. Summerer et al., Phys. Rev. C 61, 034607 (2000).

T. Baumann et al., Nature 449, 1022 (2007).

G. G. Adamian et al., Phys. Rev. C 78, 024613 (2008).

Yu. Sereda, S. Lukyanov, Yad. Fiz. 77, 864 (2014).

E. Kwan et al., Phys. Rev. C 86, 014612 (2012).

A. Ozawa et al., Nucl. Phys. A 673, 411 (2000).

X. H. Zhang et al., Phys. Rev. C 85, 024621 (2012).

S. Momota et al., Nucl. Phys. A 701, 150 (2002).

M. Mocko et al., Europhys. Lett. 79, 12001 (2007).

B. M. Tsang et al., Phys. Rev. C 76, 041302(R) (2007).

G. Chaudhuri et al., Phys. Rev. C 76, 067601 (2007).

M. Mocko et al., Phys. Rev. C 76, 014609 (2007).

S. Lukyanov et al., Phys. Rev. C 80, 014609 (2009).

C.-W. Ma et al., Prog. Part. Nucl. Phys. 121, 103911 (2021).

J. M. Boillos et al., Phys. Rev. C 105, 014611 (2022).

B. Mei et al., Phys. Rev. C 108, 034602 (2023).

N. Tang et al., Phys. Rev. C 107, 014603 (2023).

P. Feng et al., Phys. Rev. C 111, 024603 (2025).

Downloads

Published

2025-12-30

Issue

Section

Physics, nuclear; particles & fields