Investigation of $\Delta^{0}$ and $\Delta^{++}$ isobar production in central $p^{12}\mathrm{C}$ and $d^{12}\mathrm{C}$ collisions at 4.2 $A$ GeV/$c$

Authors

DOI:

https://doi.org/10.63907/ansa.v1i4.59

Keywords:

nucleus, nucleon, Δ-isobar, effective mass, mass spectrum width, central collision, propane chamber

Abstract

In this paper, we present experimental data on various characteristics of $\Delta^{0}$ and $\Delta^{++}$ isobars produced in central $p^{12}\mathrm{C}$ and $d^{12}\mathrm{C}$ collisions at a beam momentum of 4.2~A~GeV/$c$. The collision centrality is defined by the number of participating protons formed in the events under study. Experimental values of the mean multiplicity of participating protons are determined for both types of collisions. It is shown that, for $p^{12}\mathrm{C}$ and $d^{12}\mathrm{C}$ interactions, the effective masses and the widths of the mass spectra of the $\Delta^{0}$ and $\Delta^{++}$ isobars coincide within experimental uncertainties. Furthermore, the average multiplicities of $\Delta^{0}$ isobars are found to be larger than those of $\Delta^{++}$ isobars for both collision systems considered.

References

G. A. Gamov, L. D. Landau, and D. D. Ivanenko, Zh. Russ. Fiz.-Khim. Obshch., Fiz. Otd. 60, 13 (1928). (In Russian)

D. Ivanenko, Nature 129, 738 (1932); Nature 189, 981 (1934).

D. D. Ivanenko, My World Line (Moscow, 1994). (In Russian)

FOPI Collaboration, M. Eskef et al., Eur. Phys. J. A 3, 335 (1998).

R. Brockmann, J. W. Harris, A. Sandoval et al., Phys. Rev. Lett. 53, 2012 (1984).

P. Senger, in Multiparticle Correlations and Nuclear Reactions, ed. by J. Aichelin and Ardouin (World Scientific, Singapore, 1994), p. 285.

E814 Collaboration, J. Barrette et al., Phys. Lett. B 351, 93 (1995).

EOS Collaboration, E. L. Hjort et al., Phys. Rev. Lett. 79, 4345 (1997).

D. Pelte, arXiv:nucl-ex/9902006.

D. Krpič et al., Phys. Rev. C 65, 034909 (2002).

K. Olimov et al., Int. J. Mod. Phys. E 29, 2050058 (2020).

K. Olimov et al., Int. J. Mod. Phys. E 29, 2050042 (2020).

K. Olimov et al., Int. J. Mod. Phys. E 30, 2150086 (2021).

Kh. Olimov et al., Phys. Rev. C 75, 067901 (2007).

R. N. Bekmirzaev and Kh. Olimov, Phys. At. Nucl. 86, 240 (2023).

K. Olimov et al., Int. J. Mod. Phys. E 30, 2150086 (2021).

K. Olimov, G. Xudayberdiy, A. K. Olimov, R. N. Bekmirzaev, A. Qurbanov, and M. Aliev, Eur. Phys. J. Plus 138, 4550 (2023).

Kh. K. Olimov and M. Q. Haseeb, Eur. Phys. J. A 47, 79 (2011).

Kh. K. Olimov, M. Q. Haseeb, I. Khan, A. K. Olimov, and V. V. Glagolev, Phys. Rev. C 85, 014907 (2012).

K. Olimov et al., Rep. Acad. Sci. Uzbekistan 4, 29 (2011).

D. Higgins, Phys. Rev. D 19, 731 (1979).

O. Buss et al., Phys. Rep. 512, 1 (2012).

S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).

Downloads

Published

2025-12-30

Issue

Section

Physics, nuclear; particles & fields