The covariant confined quark model as a unified tool for heavy hadron decays

Authors

  • Zh. Tyulemissov The Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan, Almaty, Kazakhstan
  • A. Tyulemissova Joint Institute for Nuclear Research, Dubna, Russia

DOI:

https://doi.org/10.63907/ansa.v1i3.55

Keywords:

Relativistic model, effective model, covariant confined quark model, heavy vector meson, heavy quarkonia

Abstract

We present a comprehensive study of the Covariant Confined Quark Model (CCQM), a versatile framework for describing electromagnetic, semileptonic, and nonleptonic decays of heavy mesons and quarkonia. The CCQM is built on a covariant nonlocal quark–hadron interaction Lagrangian that incorporates confinement through vertex functions while preserving gauge invariance. We outline the construction of matrix elements for a wide range of decay processes and emphasize the model’s ability to reproduce decay widths in good agreement with experimental data. The parameters of the model are fixed using known meson masses and decay constants, thereby demonstrating the predictive power of the CCQM in heavy-flavor physics.

References

V. Lubicz et al. [ETM], Phys. Rev. D 96, no.3, 034524 (2017).

A. Bussone et al. [ETM], Phys. Rev. D 93, no.11, 114505 (2016).

S. L. Zhu, W. Y. P. Hwang and Z. s. Yang, Mod. Phys. Lett. A 12, 3027-3036 (1997).

P. Colangelo, F. De Fazio and G. Nardulli, Phys. Lett. B 316, 555-560 (1993).

J. Zeng, J. W. Van Orden and W. Roberts, Phys. Rev. D 52, 5229-5241 (1995).

T. Branz, A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Körner and V. E. Lyubovitskij, Phys. Rev. D 81, 034010 (2010).

G. Ganbold, T. Gutsche, M. A. Ivanov and V. E. Lyubovitskij, J. Phys. G 42, no.7, 075002 (2015).

S. Dubnička, A. Z. Dubničková, N. Habyl, M. A. Ivanov, A. Liptaj and G. S. Nurbakova, Few Body Syst. 57, no.2, 121-143 (2016).

M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij and Z. Tyulemissov, Phys. Rev. D 104, no.7, 074004 (2021) [arXiv:2107.08831 [hep-ph]].

M. A. Ivanov, G. Nurbakova and Z. Tyulemissov, Phys. Part. Nucl. Lett. 15, no.1, 1-11 (2018).

A. Faessler, T. Gutsche, B. R. Holstein, M. A. Ivanov, J. G. Korner and V. E. Lyubovitskij, Phys. Rev. D 78, 094005 (2008).

T. Branz, A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij and B. Oexl, Phys. Rev. D 81, 114036 (2010).

R. L. Workman et al. [Particle Data Group], PTEP 2022, 083C01 (2022).

G. C. Donald, C. T. H. Davies, R. J. Dowdall, E. Follana, K. Hornbostel, J. Koponen, G. P. Lepage and C. McNeile, Phys. Rev. D 86, 094501 (2012).

D. Hatton, C. T. H. Davies, J. Koponen, G. P. Lepage and A. T. Lytle, Phys. Rev. D 103, no.5, 054512 (2021).

Q. Chang, Y. Zhang and X. Li, Chin. Phys. C 43, no.10, 103104 (2019).

H. M. Choi, Phys. Rev. D 75, 073016 (2007).

D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Lett. B 537, 241-248 (2002).

J. L. Goity and W. Roberts, Phys. Rev. D 64, 094007 (2001).

M. A. Ivanov and Y. M. Valit, Z. Phys. C 67, 633-640 (1995).

C. W. Liu and B. D. Wan, Phys. Rev. D 105, no.11, 114015 (2022).

S. Godfrey, Phys. Rev. D 70, 054017 (2004).

L. P. Fulcher, Phys. Rev. D 60, 074006 (1999).

S. S. Gershtein, V. V. Kiselev, A. K. Likhoded and A. V. Tkabladze, Phys. Rev. D 51, 3613-3627 (1995).

E. J. Eichten and C. Quigg, Phys. Rev. D 49, 5845-5856 (1994).

M. A. Ivanov, Z. Tyulemissov and A. Tyulemissova, Phys. Rev. D 107, no.1, 013009 (2023).

S. Dubnička, A. Z. Dubničková, M. A. Ivanov and A. Liptaj, Symmetry 15, no.8, 1542 (2023).

C. T. Tran, M. A. Ivanov and A. T. T. Nguyen, Chin. Phys. 49, no.11, 113105 (2025).

M. A. Ivanov, J. G. Korner, S. G. Kovalenko, P. Santorelli and G. G. Saidullaeva, Phys. Rev. D 85, 034004 (2012).

M. A. Ivanov, J. G. Korner and P. Santorelli, Phys. Rev. D 73, 054024 (2006).

M. A. Ivanov, J. G. Korner and O. N. Pakhomova, Phys. Lett. B 555, 189-196 (2003).

Downloads

Published

2025-09-30

Issue

Section

Physics, nuclear; particles & fields