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Abstract

We present a comprehensive study of the Covariant Confined Quark Model
(CCQM), a versatile framework for describing electromagnetic, semileptonic,
and nonleptonic decays of heavy mesons and quarkonia. The CCQM is built
on a covariant nonlocal quark—hadron interaction Lagrangian that incorporates
confinement through vertex functions while preserving gauge invariance. We
outline the construction of matrix elements for a wide range of decay processes
and emphasize the model’s ability to reproduce decay widths in good agreement
with experimental data. The parameters of the model are fixed using known
meson masses and decay constants, thereby demonstrating the predictive power
of the CCQM in heavy-flavor physics.

Introduction

The study of heavy mesons and quarkonia decays plays a crucial role in understanding
the dynamics of strong and weak interactions within the Standard Model of particle
physics. These processes provide sensitive tests of Quantum Chromodynamics (QCD),
especially in its nonperturbative regime where quark confinement and hadronization
phenomena dominate. Despite significant progress, the theoretical description of such
decays remains challenging due to the complexity of nonperturbative effects. Various
theoretical approaches, including lattice QCD simulations [1,[2], QCD sum rules [3],
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and effective field theories [4,5], have been developed to tackle these challenges, each
with its advantages and limitations.

One ongoing debate concerns the optimal way to incorporate quark confinement
and hadron structure into phenomenological models. While local quark models often
lack gauge invariance and struggle with ultraviolet divergences, nonlocal approaches
have shown promise in addressing these issues. The Covariant Confined Quark Model
(CCQM) [6-8] offers a fully covariant, gauge-invariant framework that introduces
nonlocal vertex functions to simulate quark confinement effectively. Although the
CCQM is widely used to describe the decays of heavy mesons and quarkonia, it
has also been successfully applied to processes in the light hadron sector, including
hadrons composed of u, d, s, and ¢ quarks. For instance, in [9], two-body
nonleptonic decays of light A-hyperon, A — pr~(nn?), were systematically studied,
accounting for both short- and long-distance effects. The short-distance effects
are induced by five topologies of external and internal weak W= -exchange, while
long-distance effects are saturated by an inclusion of the so-called pole d}ragrams with

1

. . + — . .
intermediate % - and % -baryon resonances. The contributions from 5 resonances

were calculated straightforwardly by account for nucleon and ¥ -baryons, whereas
the contributions from %_ resonances were calculated by using the well-known
soft-pion theorem in the current-algebra approach. This allows one to express the
parity-violating S— wave amplitude in terms of parity-conserving matrix elements.
It was found that the contribution of external and internal W -exchange diagrams is
sizably suppressed, e.g., by one order of magnitude in comparison with data, which
are known with quite good accuracy. Pole diagrams play the major role in achieving
consistency with experiment. Moreover, the model was applied to the strong decays
of A-isobar, composed of u— and d—-quarks |10]. In that paper we used the same
mechanism for fitting the free parameter of the model to determine the decay width.
The resulting behavior of the strong form factor Ga,,(Q*) for space-like squared
transferred pion momentum agrees well with other theoretical approaches and lattice
calculations. Earlier works, such as Refs. [6,[11], further demonstrate the applicability
of the CCQM to both the light and heavy hadron sectors. This applicability is
summarized in Table IV of Ref. [6], which lists various electromagnetic and leptonic
decays.

In this work, we employ the CCQM to study electromagnetic, semileptonic, and
nonleptonic decays of heavy mesons and quarkonia. Our main aim is to test the
predictive power of the CCQM by calculating decay widths and form factors and
comparing them with available experimental data. This approach allows us to assess
the model’s capacity to describe a wide range of heavy-flavor processes within a
unified framework.

The paper is structured as follows: Section [1] presents the theoretical foundations
of the CCQM, including the compositeness condition and the treatment of gauge
invariance. Section [2| discusses the calculation of decay amplitudes. Section
describes the parameter fitting procedures. Finally, Section 4| summarizes our main
conclusions and outlines prospects for future research.

1 The Covariant Confined Quark Model (CCQM)

In this paper we consider the Covariant Confined Quark Model (CCQM) as a unified
tool for electromagnetic, semileptonic and nonleptonic decays of the heavy mesons
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and quarkonia.
The cornerstone of the CCQM mathematical apparatus is an invariant quark-
hadron nonlocal interaction Lagrangian:

Line = guM () Jy () + Hee., (1)

Ju(z) = /dl'l/dl'z F (521, 02) @2 (22) D arqa (1), (2)

where gj; is the coupling constant of the hadron field M and the quark current

Jar, Fy is a vertex function and I'y; the appropriate string of Dirac matrices which

corresponds to the spin and parity of the meson. The vertex function is taken as an

exponential term (to incorporate the hadron size) multiplied by a delta function (to
ensure translational invariance)

Fay(w;01,02) = 6(2 — w11 — woxo) Py [(% - $2)2} )

w2 = mya/ (my +ma),

Oy, [(fﬂl B x2)2} _ / (;ZW]; e—ﬂc(mwz)é(_kz)’

O(—k?) = /M,

Here, Aj; is a size parameter of the model, which is fixed by the well-known
meson mode. m; are quark masses and ® represents the Fourier-transformed vertex
function. The exponential form of the vertex function helps to avoid any of ultraviolet
divergences. To guarantee convergence in the CCQM, a cutoff via the Schwinger
parameter is introduced Ref. [6]7]. It should be noted that in the case when the
meson mass is heavier than the sum of constituent quark masses, there are no infrared
divergences, and integrals can be calculated without this mechanism.

The coupling constant can be determined from the compositeness condition,
which is formulated in terms of the derivative of the meson mass operator. This
condition serves as the main mechanism for eliminating double counting of quark
degrees of freedom

Zyg =1 = gl (m3y) = 0. 3)
The renormalization constant Zj; is interpreted as a measure of the mixing between
a physical meson state and its corresponding bare state. Setting Zj; = 0 effectively
excludes any bare state component from the physical state, allowing the meson to be
understood as a fully bound quark-antiquark system (see Refs. [6,8]). Within this
framework, quarks appear only as internal constituents mediating interactions: the
meson may momentarily dissociate into a virtual quark pair during the interaction
process and subsequently recombine into a meson in the final state. The coupling
constant g,, is then adjusted to satisfy the condition expressed in Eq. . Notably,
gluonic degrees of freedom are not included explicitly in the model; instead, their
effects are absorbed into the structure of the vertex function, which depends on
model parameters. The mass functions can be written explicitly as

d*k

Ip(p?) = Ncg?»/W@%(—RQ)Tr(fSl(kﬂLwlp)7552(/f—wzp)>, (4)

o Ak ~ ,
Hlxi/ (pz) = NCQ%/W@%/(—RQ)TT (7“51“? + wlP)V 52(k’ - wgp))
= g™y (p?) + pp" I}, (7). (5)
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Here N, = 3 is the number of colors. Since the vector meson is on its mass-shell
ev - p =0 we need to keep the part IIy/(p?). Substituting the derivative of the mass
functions into Eq. one can determine the coupling constant gg as a function of
other model parameters.

The electromagnetic interaction can be incorporated into the CCQM in a way that
respects gauge symmetry. To achieve this, one introduces a gauge-field exponential
I(x;,z, P), which is defined as a path-independent integral

) = Q) = ey ) (0
q(z:) = Q(x;) = (z)e’e“](x"’m’m (7)
(25,2, P) = / dz, AM(2) (8)

where P is a path between z; and x. In what follows, we focus on the first
derivatives of I(z;,z, P), see [6,|12]. Using the definition of the derivative, one
obtains:

axul(az:,y,P) =A,(z).

2 Matrix elements

The main focus of this paper is the study of various decay processes of heavy mesons
and quarkonia. These decays fall into three distinct categories: electromagnetic,
nonleptonic, and semileptonic. Accordingly, three types of matrix elements are
considered. Each class of decay processes is described by a corresponding matrix
element that encodes the dynamics of the underlying quark-level transitions and their
hadronization into observable meson states. These matrix elements are constructed
within the framework of quantum field theory using time-ordered products of interpo-
lating currents. The general structure involves meson-quark couplings, polarization
vectors of external mesons or photons, and relevant interaction operators, such as
the electromagnetic current or the effective weak Hamiltonian. Below, we present
the explicit forms of the matrix elements for representative decay processes in each
category:

My py(p;1', q) = egvar e, (p)el(q / dx / dy / dy e~ o'y ticz
<T{JV< )8 (2)Ip()}), (9)

MVv(pa Q) = €gvel‘,/(p)el(q)/dx/dz e~ iprtigz
x <T{j5(x)J5m(z)}>o , (10)

Myviv,(p:0' @) = gvgvigvs €a )65 (p1) *(q)

/dx/dy/dze ipr+ip'y+iqz

X< (T{TR () Hegp Y, (9) T (2)1), - (11)
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Figure 1: Feynman diagrams describing the radiative decays of a vector meson.
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Figure 2: Feynman diagrams describing the V' — ~ decay of a vector meson.

Here:
Tial2) = [ dp@ag(p?)iee, [ — 121,
Gr o = O = = OFh (A
Hegy = = 5 ViVaun (Co (G00) @00,) + O (20"h) @00u20) ).

All relevant Feynman diagrams are shown in Fig. 1-3. The matrix elements above
are expressed in coordinate space. To compute their numerical values, one must
apply a Fourier transformation and transition to momentum space. Consequently, in
the momentum space these matrix elements take the following form:

o matrix element of the electromagnetic decay

My py(p;1,q) = 2m)*i6(p — ' — Q) M(p, 1), (12)
M(p.p') = (=30)egvgre, (P)E)(a) (enMy" + e, ML)
M} = /(;jrl;ﬁv(—ﬁ?)ip(—@m Sy (k)Y Sk = p)y"Sy(k — 1)
M = /(2il§4i(i>v(—€§)&>p(—ﬂi)'fr [,k + B)7 S, (k + p)y* Sy(k)]

Here, {1 =k —wyp, lo =k —wep' and l3=k+w;p, lo =k +w;p . In the
case of a massless photon, Maxwell’s equations together with gauge invariance
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Figure 3: Feynman diagrams describing the nonleptonic decay of a vector meson.

lead to the transversality condition €](¢)¢" = 0. In vector meson decays,
the transversality condition €Y (p)p” = 0 must also be imposed in order to
exclude longitudinal components from the physical polarization. Accordingly,
the matrix element that incorporates this condition takes the following form

M(p,p') = e gvp, €l (q)e) (p),

where gyp, = eply,(mi, m%) + e l,(m}, m%) is radiative decay constant. The
quantities I, are defined by the double-fold integrals which are calculated
numerically.

« matrix element of the electromagnetic decay V(p) — v(p)

M (V(p) = 3(p) = Negv | éﬁzi{w-kz) ey + ) 1“5k — o)
— | dr @ (=) 2k + p) {7”5(1{)} } (13)
2 :T<k+%p>2+(1—7')k’2. (14)

Here, N, is the number of colors, and ¢y is the coupling constant associated
with the vector meson. The function ®y represents the vertex form factor
describing the internal structure of the meson, with ®{, denoting its derivative
with respect to the argument. The integral over the Feynman parameter 7
appears due to the nonlocal nature of the vertex function and ensures gauge
invariance of the matrix element by properly accounting for the momentum
dependence of the vertex.

e matrix element of the nonleptonic decay

G
M(B*(p) = Mi(p1)Ms(p2)) = TZVCKMQW ma far, €2,
X Negp+ g €a(p) €1 5(P1)
Ak~ ,
X /(27‘(‘)42 CI)B*( — (/{3 -+ w13p1) )

X (T)Ml( — (k’ + w23p2)2)

X T OF 81 (k + p1) 7™ Sy (k) 7° Sa(k +p2)]. (15)
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The nonleptonic decay is mediated by the effective weak interaction, charac-
terized by the Fermi coupling constant G, the relevant Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements Vg, and the factor ay, , which accounts
for short-distance QCD effects. The term my fas, €2, corresponds to the lep-
tonic decay constant and polarization vector of the meson Ms , together with
its mass. The quark propagators S; appear inside the trace along with the
weak interaction operator O, encoding the spinor structure of the process.
The parameters w;; = myg, /(mg, +my;) are introduced to reflect the relative
contributions of constituent quark masses within the mesons, allowing for a
proper treatment of the internal dynamics in the loop integral.

Finally, based on matrix elements we obtain decay width of following processes:

@ 3 mp ’ 2
F(V—>P+’y)=ﬁmv (1_m%/> v py - (16)
4 2 2
T(V — (707) = ”30‘ mv<Qn:£V) V1 —daf (14 227), (17)
(5o ) = S s e o
A e

where A = —\; + Ay is the helicity configuration of the decay products, and |ps| is
the magnitude of the final-state meson momentum in the rest frame of the decaying
particle. In the expression for the electromagnetic decay V' — P + ~, the form
factor gy p, characterizes the coupling constant between the vector and pseudoscalar
mesons and the photon. In the leptonic decay width T'(V — ¢7¢7), the factor
fv = Gy (m})/my represents the leptonic decay constant of the vector meson, which
in our convention coincides with the weak decay constant. The variable z, = m,/my
denotes the lepton mass normalized to the meson mass. The quark charge factor
Qv depends on the flavor composition of the meson: Qv = (e, — eq)/v2 = 1/v/2
for the p° meson, Qv = e. = 2/3 for charmonium (J/v ), and Qy = ¢, = —1/3
for bottomonium (1) states. These formulas provide the final step in connecting
theoretical amplitudes with observable quantities and serve as the basis for comparison
with experimental data.

3 The model parameters

We begin by listing the fixed parameters of the CCQM, as taken from the Particle
Data Group (PDG) [13]. Table [1| shows the constituent quark masses used in the
model, along with the universal infrared cutoff parameter A\, which was determined
in earlier works (see Ref. [§] for details).

Table 1: Model parameters: quark masses and cutoff parameter A (all in GeV).

mu ms mC mb A
0.241 0.428 1.67 5.04 0.181

The masses of the ground and radially excited states of the mesons and quarkonium
are given in Table 2]
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Table 2: Masses of heavy meson taken from the PDG [13] (in MeV).

B* B° BY B B*
5279.25(26)  5279.63(20)  5366.91(11)  6274.47(32)  5324.71(21)

B: J/U Y(1s)
5415.8(1.5)  3096.900(6)  9460.30(26)

Only 10 free parameters are used to describe the 21 exclusive decay channels
considered in this paper. Table [3| presents the fitted size parameters for the vector
mesons involved in this work. The fitting of these parameters was performed primarily

Table 3: Size parameters of vector mesons and quarkonia (in GeV)

Ay Mg Ap- Ap; Ap- Ap: Ay Ay
0.61  0.81 153 156 172 1.71 2795  4.03

based on the leptonic decay constants of the mesons. The size parameters A, were
adjusted such that the decay constants calculated within the CCQM framework agree
with available experimental measurements. In cases where experimental data were
lacking, lattice QCD results were used as benchmarks to guide the fitting procedure.
This ensures that the model consistently reproduces key observables across different
meson families. All numerical values for the leptonic decay constants used in the
fit are listed in Table [4 The numerical values obtained within the CCQM for the

Table 4: Calculated leptonic decay constants fy, (in MeV).
ccQM Expt/Lat

f 218(22)  221(1) [13]
fre 227(23)  217(7)  [13]
fo-  246(25)  223.5(8.4) [1
for 273(27)  268.8(6.6) [1
I 185(19)  186.4(7.1) [1,2]
f: 260(26)  223.1(5.6) [1,2]
frw  415(42)  405(6) [14]
fras)y  700(70)  689.7(4.6) [15]

leptonic decay constants are in excellent agreement with both experimental and
lattice QCD data. The next step is to numerically compute the decay widths for
electromagnetic, leptonic, and nonleptonic processes of the heavy vector mesons and
quarkonia.

4 Results and discussion

First, in Table [5] and [6] we present widths of electromagnetic decay obtained by
CCQM based on the previously fixed parameters. Our results are compared with
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those from various other theoretical approaches available in the literature. As seen

Table 5: Widths of B* — By and BY — B,y decays (in eV).

Mode cCcQM [16] [17] 18] [19] 3]
B+ — Bty | 372(56)  349(18)  400(30) 190  740(88)  380(60)

B*0 — B% | 126(19)  116(6)  130(10) 70  228(27)  130(30)

B — B% | 90(14)  84(10)  68(17) 54  136(12)  220(40)
Mode CCQM [20] [4]

B — Bty | 372(56) 401 220(90)

B*% — B% | 126(19) 131 75(27)

Table 6: Widths of B} — B.y decay (in eV).

Mode ccQM 21 [22] 23 18] [24]  [25)
Bt —Bfy | 335) 533 8 59 33 60 135

from Tables [5] and [6] the CCQM predictions for radiative decay widths are generally
consistent with those obtained in other theoretical models, although some spread in
values exists due to differences in model assumptions and parameters. Our results
provide a reliable estimate of electromagnetic decay widths for the B*, B!, and B}
mesons, which are important for understanding their structure and for comparison
with future experimental data.

Table [7] presents the leptonic branching ratios of quarkonia. From the results

Table 7: Leptonic decay branching ratio of J/¥ and T(1s)-mesons

Quantity J/ T(1S)

B(V — () ccQM Expt ccQM Expt
BV —1ttr7) (%) 2.365 2.60(10)
BV — utu) (%) | 5964  5961(33) | 2384  2.38(5)
BV —ete) (%) | 5964  5971(32) | 2384  2.48(11)

presented in Table [7] the model reproduces both the muon and electron decay
channels with high precision. The decay to 7 leptons is kinematically forbidden for
J/1 due to its mass but allowed and well described for the heavier Y (15) state.
This agreement provides confidence in the CCQM approach for calculating leptonic
decays of heavy quarkonia.

Conclusions

The Covariant Confined Quark Model (CCQM) provides a unified and consistent
framework for studying the decays of heavy mesons and quarkonia. By combining
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nonlocal quark—hadron interactions with the compositeness condition, it reproduces
key observables such as decay widths and form factors in good agreement with
experiment and lattice QCD. Certain processes, such as meson production in elec-
tron-positron annihilation (ete~ — MM ), remain beyond its standard scope, since
the model does not include the full dynamics of fragmentation or multi-hadron
emission. Nevertheless, the gauge-invariant treatment of electromagnetic interactions
and the careful fitting of parameters ensure that the CCQM captures essential aspects
of hadron structure and dynamics. In addition to the methodological developments
emphasized here, the approach has been successfully applied to electromagnetic [26],
leptonic [27,28], and nonleptonic [26,29-31] B-meson decays. Overall, the CCQM
confirms its value as a tool for heavy-flavor physics and offers prospects for further
applications to more complex processes and hadronic states.
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